Data Leaks in health data transition

Where data can be attacked?

Between phone and cloud!

Connection between phone and storage

Why?

- Secure storage
- Legal prosecution
- Internet traversal

Internet and TLS

Secure Socket Layers (SSL) -> Transport Layer Security (TLS)

Encryption and Internet

<40% 2013 (Edward Snowden on JRE podcast)

50% Oct, 2018 (Sandvine's Global Internet)

80% Oct, 2019 (Edward Snowden on JRE podcast)

95% Oct, 2020 ("HTTPS encryption on the web" Google)

How TLS works

- 1. Client validates ownership of server's public key
- 2. Securely generating and exchanging a session key
- 3. Encrypt the transmitted data

CA and certification

https//:www.secureband.com

public_certificate = 123456789

∔ SecureBand

CA and certification

https//:www.secureband.com

SecureBand

public_certificate = 123456789

What doesn't TLS conceal?

- the contacted site
- the length of the rest of the URL (Example.com/secreturl)
- the length of the HTML of the visited page
- the number of other resources (e.g., images, iframes)
- the timestamps.
- IP

TLS in smartbands apps

Connection between phone and storage

Why?

- Secure storage
- Legal prosecution
- Internet traversal

TLS shows the length of the HTML of the visited page!!

Learning the ground truth

Man in the Middle proxy

- (i) decrypts the traffic
- (ii) examines the packet contents
- (iii) re-encrypts the traffic
- (iv) sends the traffic to its destination.

Burp Suite Fiddler

[{"time":1602684553,"rate":"SQ==","type":2,"device_id":"EE2871FFFEBB8084","source":25}]

MITM and certificates

MITM and certificates

Trusted certificates

Need to install MITM certificate

← Trusted credentials

System User	
AC Camerfirma S.A. Chambers of Commerce Root - 2008	
AC Camerfirma S.A. Global Chambersign Root - 2008	
ACCV ACCVRAIZ1	
Actalis S.p.A./03358520967 Actalis Authentication Root CA	
AddTrust AB AddTrust External CA Root	
AffirmTrust AffirmTrust Commercial	
AffirmTrust AffirmTrust Networking	
AffirmTrust AffirmTrust Premium	
AffirmTrust	

Certificate pinning

Disabling pinning

reverse-engineering toolkits

- Frida
- Xposed framework

App structure

Data leaks

Data leaks

heartrate: 80 → ABCDEFGHIJKLM (13 char) heartrate: 100 → ABCDEFGHIJKLMN (14 char)

Attack

Attack

- obtaining a copy of the smartband
- discovering the ground truth
- inferring the data leaks from encrypted traffic
- mass profiling end users of smartbands

[{"time":1602684553,"rate":"SQ==","type":2,"device_id":"EE2871FFFEBB8084","source":25}]

Mass profiling

- gathering all relevant IPs
- traffic filtering
- applying metadata rules

Why attack and smartbands?

- Controllable synchronization of activities.
- Absence of any countermeasures.
- Constant pull of possible IPs.

Detecting the adversary

- ISP?
- Country?
- Legislations?

Possible countermeasures

- Modifying plain text → cipher text size ratio
- Concealing frequency of packets transmission
- Introducing randomness for order of packets